冷凍用自動制御機器

目次

まえがき……………………………………………松岡文雄（1）

1.膨張弁……………………………………………………………………（1）
 1.1概説…………………………………………新井士朗（1）
 1.2温度自動膨張弁およびディストリビュータ……………………（6）
 1.2.1温度自動膨張弁の働き……………………新井士朗（6）
 1.2.2膨張弁の均圧方式……………………隅田嘉裕（8）
 1.2.3ディストリビュータ……………………隅田嘉裕（10）
 1.2.4各種感温筒封入方式……………………新井士朗（11）
 1.2.5構造…………………………………………新井士朗（15）
 1.2.6使用上の注意………………………………新井士朗（20）
 1.2.7容量表および外形寸法……………………新井士朗（22）
 1.3定圧膨張弁…………………………………………新井士朗（22）
 1.4キャピラリーチューブ………………………………高雷（24）
 1.5電子膨張弁…………………………………………新井士朗（33）
 付表1-1温度膨張弁の容量および寸法……………新井士朗（36）
 付表1-2定圧膨張弁の容量および寸法……………新井士朗（80）
 付表1-3電子膨張弁の容量および寸法……………新井士朗（82）

2.電磁弁……………………………………………………………………（91）
 2.1概説…………………………………………森田紀幸（91）
 2.2種類…………………………………………森田紀幸（91）
 2.3使用例ならびに使用上の注意………………………………（96）
 2.3.1液冷媒用………………………………小谷津雅隆（96）
 2.3.2高圧ガス冷媒用………………………………三重野純（99）
 2.3.3吸入ガス冷媒用………………………………木幡至宏（100）
 2.3.4水、ブライン用………………………………木幡至宏（100）
 2.3.5取り扱い上の注意………………………………森田紀幸（102）
 2.4容量および寸法………………………………森田紀幸（102）
 付表2-1電磁弁の容量および寸法……………森田紀幸（103）

3.四方切換弁………………………………………………………………（109）
 3.1概説…………………………………………森田紀幸（109）
 3.2種類…………………………………………森田紀幸（109）
 3.3使用例ならびに使用上の注意……………………隅田嘉裕（111）
 3.4容量および寸法………………………………森田紀幸（112）
 付表3-1四方切換弁の容量および寸法…………森田紀幸（113）

4.圧力調整弁………………………………………………………………（116）
 4.1概説…………………………………………新井士朗（116）
 4.2種類…………………………………………新井士朗（116）
 4.3使用例ならびに使用上の注意………………………………（127）
 4.3.1蒸発圧力調整弁………………………………古屋浩志（127）
 4.3.2吸入圧力調整弁……………………………小谷津雅隆（131）
 4.3.3高圧圧力調整弁………………………………三重野純（132）
 4.4構造、容量および寸法表………………………………新井士朗（134）
 付表4-1圧力調整弁の構造、容量および寸法……新井士朗（135）
5. 冷媒液面制御器
 5.1 概説 田代英史
 5.2 フロートスイッチ 岩下友彦
 5.3 特殊液面制御器 館見博文

6. その他の制御機器
 6.1 圧力センサ 小堺紳
 6.2 圧力スイッチ 小堺紳
 6.3 自動制水弁 小堺紳
 6.4 サーモスタット（温度スイッチ）小堺紳

7. 安全装置
 7.1 安全弁 小堺紳
 7.2 高圧圧力スイッチ 小堺紳
 7.3 低圧圧力スイッチ 小堺紳
 7.4 油圧保護スイッチ 小堺紳
 7.5 可溶栓 梅澤仁志
 7.6 断水スイッチ 小堺紳
 7.7 安全装置の作動圧力 橋本公秀
 7.8 設計圧力、許容圧力、試験圧力および安全装置作動圧力の関係 橋本公秀

8. 配管付属品
 8.1 止め弁 梅澤仁志
 8.2 逆止め弁 梅澤仁志
 8.3 フィルタドライヤ 梅澤仁志
 8.4 ストレーナ 梅澤仁志
 8.5 サイトグラス 梅澤仁志
 8.6 アキュムレータ 梅澤仁志
 8.7 配管接続法 古川亮太

付表8-1 配管付属品 梅澤仁志

9. 冷媒制御方式
 9.1 ポンプダウン制御 山下哲也
 9.2 デフロスト制御方式 山下哲也
 9.3 容量制御方式 隈田嘉裕
 9.4 ユニタコントロール方式 佐藤圭一
 9.5 液ポンプ方式 新井豊
 9.6 液式蒸発器 河本啓

10. 海外規格・規制について
 10.1 概説 新井土朗
 10.2 CEマーキングについて 新井土朗
 10.3 CEマーキング適合宣言書 新井土朗
 10.4 IEC/EN規格のポイント 新井土朗
 10.5 ULについて 新井土朗
 10.6 CSAについて 新井土朗
 10.7 CCCとCQCについて 新井土朗
 10.8 韓国KCマーク 新井土朗
 10.9 海外規格・規制の将来 新井土朗
1. 膨張弁

1.1 概説

膨張弁は、冷凍システムにおいて冷媒流量の制御を行う最も重要な役割をもっている。
それは冷凍システムにおいての圧縮機容量、蒸発器による熱吸収の割合、凝縮器による熱放出の割合、冷媒流量の割合によって均衡を保つからである（図1.1）。
普通冷凍システムでは圧縮機の最大容量に合わせて熱交換器は選択構成されていると仮定すれば、冷媒の流量制御は圧縮機の容量に合致しなければならない。
一般に使用されている圧縮機はどのようなシステムで、どのような容量制御を行うかによってその能力は異なるため、そのシステムに応じた流量制御によって常に安全、かつ効果的に運転しなければならない。

1.1.1 膨張弁の働き、および能力の計算

（1）膨張弁の働き

膨張弁の主目的は、凝縮器から出た高温高圧の液冷媒を断熱膨張により蒸発しやすい状態に減圧し、蒸発器内部において最適な流量を確保することであり、冷却負荷の増減によって変化する圧縮機の容量に合わせて、吸込まれる冷媒ガスの過熱度を一定範囲内に保持し、液戻り、異常過熱を防止することである。

（2）膨張弁の能力計算

膨張弁の口径を通る冷媒の量については冷凍機械工学ハンドブック1)によると次式によって示されている。

\[M = 720C_D\sqrt{2g\rho (P_1 - P_2)} \]

- \(M \): 冷媒の流量 (lb/min)
- \(\rho \): 弁の入口における冷媒液の密度 (lb/ft^3)
- \(g \): 重力の加速度 (= 32.2 ft/sec^2)
- \(C_D \): 流出係数
- \(A \): 弁の流出面積 (ft^2)
- \(P_1 \): 膨張弁入口圧力 (lb/in^2-G)
- \(P_2 \): 膨張弁出口圧力 (lb/in^2-G)

研究結果における流出係数 \(C_D \) は

\[C_D = 0.0802\sqrt{\rho_1 + 0.0396V^2} \]

\(\rho_1 \): 膨張弁入口における液冷媒の密度 (lb/ft^3)
V2：膨張弁弁出口圧力における冷媒（液、ガス混合物）の比体積（m³/kg）
これらの式をメートル法単位に換算すると、通常運転の範囲では、
R22 : M = 5470C_p A √ P1 - P2
R717(NH3) : M = 3880C_p A √ P1 - P2
C_p = 0.02005 √ ρ1 + 0.634V2
R22 C_p = 0.65 - 0.85
R717(NH3) C_p = 0.5 - 0.8
R22について上式をまとめると、
M : 冷媒の流量（kg/h）
Q : 冷凍能力（kcal/h）
h1 : 膨張弁直前温度における液のエンタルピー (kcal/kg)
h2 : 蒸発器出口のガスのエンタルピー (kcal/kg)
q : 冷凍効果 (kcal/kg)
A : 弁の流出面積（cm²）
P1 : 膨張弁入口圧力 （kg/cm²）
P2 : 膨張弁出口圧力 （kg/cm²）
ρ1 : 膨張弁入口における液化冷媒の比重量 (kg/m³)
V2 : 膨張弁出口圧力における冷媒（液・ガス混合物）の比体積 (m³/kg)
M = 5470(0.02005√ ρ1 + 0.634V2) A √ P1 - P2
……………………………………⑴
M = Q/q…………………………………………⑵
式⑴と⑵より
A = Q/1747(0.02005√ ρ1 + 0.634V2)q √ P1 - P2
(mm²) ……………⑶’
式⑵および⑶’により弁の有効面積が算出される。
したがって、弁揚程（弁リフト）および弁弁角度（ニードル角度）が決定されることにより口径が算出される。
実務的には、JIS B8619「冷媒用温度自動膨張弁－性能試験方法」に従って実流量を測定し、弁弁形状／寸法を決め、能力を検証している。
通常膨張弁の形状および接手が同一の場合においては弁閥度（過熱度）特性も等しくしてあり、そのため弁弁能力の区分は口径の大きさによって決定されることが最も多い。
実際に膨張弁（バルブ）を選択する場合は、製作メーカーのカタログ内に表示されている能力（kW 数や冷凍トン数）によって知ることができる。
1冷凍トン当りの熱量は、米国冷凍トン (USRt) では3024 kcal/h = 3.516 kW、日本冷凍トン (JRt) では3200 kcal/h = 3.861 kWであること、1冷凍トン当りの熱量は、米国冷凍トン (USRt) と日本冷凍トン (JRt) でそれぞれ3.516 kWと3.861 kWである。通常「冷凍トン」とは米国冷凍トンが使われている。1冷凍トン当りの冷媒の循環量は凝縮温度および蒸発温度によって異なる。一般に蒸発温度一定とし、凝縮温度が上昇するに従いトン数当りの流量および重量は増加し、また、この傾向と同じ状態は凝縮温度一定で蒸発温度が下降した場合も同様である。
1冷凍トン当りの冷媒循環量を求めると、
q = h2 - h1……………………………………⑷
M = Q/q…………………………………………⑸
式⑷と⑸により冷媒循環量を求めれば、表1.1 のおりである（ただし圧縮機の損失は含まない）。

1.1.2 種 類
膨張弁は冷却負荷の種類、能力および蒸発器の形状に応じて最もその装置に合った膨張弁を選択することが望まれる。
通常使用されている膨張弁の種類をあげると次のよう分類することができる。

・自動形
（1）温度自動膨張弁（過熱度保持）
（2）定圧膨張弁（蒸発圧力保持）

・手動形
（3）手動膨張弁（開度手動調節）

・電子形
（4）電子膨張弁（外部信号操作）
（5）キャピラリーチューブ
自動形と呼ばれるものは、初期の目標値（過熱度、圧力）と一致させるためにその量を検出し、目標値と比較し偏差に応じて補正動作を自動的に行わせ、目標値に近づけることを目的としている。
手動形は、ある目標値に対し偏差の補正動作を人力によって行うことである。

（1）温度自動膨張弁
この形の膨張弁は直膨式クーラーを有する冷凍、冷房装置に最も多く使用されているもので、冷媒流量制御を自動的に行うもので、冷却負荷量に応じて冷却効果を最大にし、安全かつ経済性の優れたものである。特に負荷変動の激しい装置、および過熱度に限界がある場合の装置に適している。1.2節で詳細に説明する。

（2）定圧膨張弁
定圧膨張弁は蒸発器内圧力を一定に保持することを目的としており、一般に低温装置の最低圧力条件下における連続運転用として使用されることが多い。

表1.1 膨張弁能力表

<table>
<thead>
<tr>
<th>冷凍トン数</th>
<th>R 22</th>
<th>25</th>
<th>38</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET℃</td>
<td>流量</td>
<td>重量</td>
<td>流量</td>
<td>重量</td>
<td>流量</td>
</tr>
<tr>
<td>10</td>
<td>0.99</td>
<td>1.183</td>
<td>1.154</td>
<td>1.317</td>
<td>1.302</td>
</tr>
<tr>
<td>5</td>
<td>1.001</td>
<td>1.196</td>
<td>1.168</td>
<td>1.333</td>
<td>1.38</td>
</tr>
<tr>
<td>0</td>
<td>1.013</td>
<td>1.21</td>
<td>1.183</td>
<td>1.35</td>
<td>1.4</td>
</tr>
<tr>
<td>-5</td>
<td>1.025</td>
<td>1.224</td>
<td>1.199</td>
<td>1.368</td>
<td>1.422</td>
</tr>
<tr>
<td>-10</td>
<td>1.037</td>
<td>1.239</td>
<td>1.215</td>
<td>1.387</td>
<td>1.443</td>
</tr>
<tr>
<td>-20</td>
<td>1.066</td>
<td>1.273</td>
<td>1.252</td>
<td>1.43</td>
<td>1.494</td>
</tr>
<tr>
<td>-30</td>
<td>1.096</td>
<td>1.309</td>
<td>1.293</td>
<td>1.476</td>
<td>1.549</td>
</tr>
<tr>
<td>-40</td>
<td>1.129</td>
<td>1.349</td>
<td>1.337</td>
<td>1.526</td>
<td>1.609</td>
</tr>
<tr>
<td>-50</td>
<td>1.167</td>
<td>1.395</td>
<td>1.388</td>
<td>1.585</td>
<td>1.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>冷凍トン数</th>
<th>R 134a</th>
<th>25</th>
<th>38</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET℃</td>
<td>流量</td>
<td>重量</td>
<td>流量</td>
<td>重量</td>
<td>流量</td>
</tr>
<tr>
<td>10</td>
<td>1.022</td>
<td>1.232</td>
<td>1.198</td>
<td>1.38</td>
<td>1.424</td>
</tr>
<tr>
<td>5</td>
<td>1.038</td>
<td>1.252</td>
<td>1.219</td>
<td>1.405</td>
<td>1.453</td>
</tr>
<tr>
<td>0</td>
<td>1.055</td>
<td>1.272</td>
<td>1.242</td>
<td>1.431</td>
<td>1.484</td>
</tr>
<tr>
<td>-5</td>
<td>1.073</td>
<td>1.294</td>
<td>1.266</td>
<td>1.459</td>
<td>1.517</td>
</tr>
<tr>
<td>-10</td>
<td>1.092</td>
<td>1.317</td>
<td>1.292</td>
<td>1.488</td>
<td>1.551</td>
</tr>
<tr>
<td>-20</td>
<td>1.133</td>
<td>1.367</td>
<td>1.347</td>
<td>1.552</td>
<td>1.627</td>
</tr>
<tr>
<td>-30</td>
<td>1.178</td>
<td>1.421</td>
<td>1.407</td>
<td>1.622</td>
<td>1.712</td>
</tr>
<tr>
<td>-40</td>
<td>1.227</td>
<td>1.48</td>
<td>1.475</td>
<td>1.699</td>
<td>1.808</td>
</tr>
<tr>
<td>-50</td>
<td>1.28</td>
<td>1.543</td>
<td>1.548</td>
<td>1.783</td>
<td>1.913</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>冷凍トン数</th>
<th>R 404A</th>
<th>25</th>
<th>38</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET℃</td>
<td>流量</td>
<td>重量</td>
<td>流量</td>
<td>重量</td>
<td>流量</td>
</tr>
<tr>
<td>10</td>
<td>1.483</td>
<td>1.555</td>
<td>1.902</td>
<td>1.859</td>
<td>2.619</td>
</tr>
<tr>
<td>5</td>
<td>1.512</td>
<td>1.585</td>
<td>1.946</td>
<td>1.903</td>
<td>2.697</td>
</tr>
<tr>
<td>0</td>
<td>1.543</td>
<td>1.617</td>
<td>1.995</td>
<td>1.95</td>
<td>2.782</td>
</tr>
<tr>
<td>-5</td>
<td>1.577</td>
<td>1.653</td>
<td>2.048</td>
<td>2.002</td>
<td>2.876</td>
</tr>
<tr>
<td>-10</td>
<td>1.613</td>
<td>1.691</td>
<td>2.105</td>
<td>2.058</td>
<td>2.981</td>
</tr>
<tr>
<td>-20</td>
<td>1.697</td>
<td>1.778</td>
<td>2.239</td>
<td>2.188</td>
<td>3.23</td>
</tr>
<tr>
<td>-30</td>
<td>1.79</td>
<td>1.876</td>
<td>2.393</td>
<td>2.339</td>
<td>3.528</td>
</tr>
<tr>
<td>-40</td>
<td>1.89</td>
<td>1.992</td>
<td>2.579</td>
<td>2.521</td>
<td>3.908</td>
</tr>
<tr>
<td>-50</td>
<td>2.024</td>
<td>2.122</td>
<td>2.796</td>
<td>2.733</td>
<td>4.377</td>
</tr>
</tbody>
</table>
膨張弁
圧力制御となり、流量制御に対しては直接の関係を有しないため、冷凍負荷のあまり変わらないものや、冷却負荷制御温度範囲の狭いものに適している。
通常この膨張弁を使用する場合は温度スイッチと併用し、負荷の減少を温度の低下によって検出して制御することが望ましい。

(3) 手動膨張弁
弁の開度変化を圧力や温度によって行わず手動によって任意に調節するもので、自動膨張弁のバイパス弁として使用することが多く、単体での自動運転用にはほとんど使用されない。
構造は単なる冷媒の断熱膨張を目的としたもので、図1.2に示すように、冷媒は①の入口より流入し、口径とニードル弁から構成される②弁部により減圧され、出口③より流出される。

図1.2 手動膨張弁

また、弁の開度調節は調整ボルト⑥の回転によって行うもので、一般にその能力はダイアフラム、ベローズの動作間隔に制限の生じる自動膨張弁と比較して、その多くは約2倍近くまで出し得るようになっている。
なお高気密性を必要とする関係上、金属ベローズによって冷媒は外気と完全に遮断されるため、漏洩の心配はまったくない。

① 口径と流量
人力による流量調節は普通目視によって行うため、できるだけ微少流量の設定が可能となるようにハンドルの回転角度による流量変化が比例的になるようにしなければならない。図1.3は弁前後の圧力差を一定とした場合の弁開度と流量変化曲線である。

図1.3 パン開度と流量変化曲線

（4）電子膨張弁
電子膨張弁は、インパータ、冷凍・冷蔵装置やショーケースなどで、インパータ制御を伴うなど、より高精度の制御や効率の向上、より快適性を求める場合に使用される。
一般に、電子膨張弁は、ステッピングモータを利用したステッピングモータ方式、電磁ソレノイドを利用した電磁デューティ方式、バイメタルを利用した熱電方式などがあるが、その中でステッピングモータ方式が広く普及している。その理由は、従来の温度膨張弁に要求される適温制御を含む外部信号での機能ももたせることができるからである。これについては1.5節で詳細に説明をする。
（5）キャピラリーチューブ

冷凍装置で、凝縮圧力、蒸発圧力および負荷の変動がほとんど起こらない運転ができるものについては膨張弁の弁開度は調節する必要がなくなる。このような装置には弁を使用しないでも、それと同じ圧力差の下で所要の冷媒量を通すような抵抗管で目的が達せられる。一般にこのような場合、抵抗管としてキャピラリーチューブが用いられる。

（6）圧縮機の容量制御

膨張弁の選択については圧縮機の容量制御方式を十分考慮して決定することが望まれ、その圧縮機の容量制御については大略5つの方法が考えられる。

① 圧縮機の発停による制御（100%または0）

密閉型圧縮機に多くみられるもので、ピストンが単数の場合において、容量変化は吸入圧力の低下における冷媒循環量の低下によるもので、最終目標値設定吸入圧力に到達するまでの運転は常に100%稼働の装置（膨張機構として、キャピラリーチューブが比較的多く使われている）。

② 圧縮機の吸入側バイパス回路を設けた容量制御（100% ～ 50%）

③ 圧縮機の回転速度容量制御（100% ～ 50%）

圧縮機の回転数を減速する方法で、同一配管中において圧縮機の吸入量を減少させるもので、その量は大略50%を目標としたもの（温度自動膨張弁、電子膨張弁）。

④ ①の圧縮機を複数使用する制御

容量制御構造をもたない圧縮機を並列に取付ける方法で、合計制御圧縮機を1台加える場合である）負荷量の変化に応じて圧縮機を発停させる方法で、この組み合わせは2台、3台のことが多い。

⑤ 多気筒圧縮機による制御（100% ～ 25%）

容量制御可能装置の代表ともいえるもので、多気筒シリンジ中において無負荷シリンジ可能のもので、その数は通常3台または4台の整数倍で構成されている。制御範囲も100% ～ 25%と非常に広い（温度自動膨張弁、電子膨張弁）。