

ICR2015 Workshop on Risk Assessment of Mildly Flammable Refrigerants, August 20, 2015

4. Fundamental and Practical Flammability Properties of 2L Refrigerants

Kenji TAKIZAWA

National Institute of Advanced Industrial Science and Technology (AIST)

Overview

1. Background

- 2. Fundamental flammability properties
- 3. MIE and quenching distance
- 4. Flame extinction diameter
- 5. Summary

1. Background

- Importance of evaluating low flammability

2. Fundamental flammability properties

3. MIE and quenching distance

- 4. Flame extinction diameter
- 5. Summary

Flammability properties, indices of fire risks

*Risk** = combination of probability of occurrence of harm and severity of that harm

What is class 2L refrigerant?

Class 2L is the least flammable refrigerant class

- Low GWP 2L refrigerants are now considered as promising alternatives
- Flammability properties should be studied to characterize 2L for further understanding their practical risks

*ISO 817, Refrigerants— Designation and safety classification (2014)

Objectives Practical fire risk

AIST

1. Background

- <u>2. Fundamental flammability properties</u>
 <u>Flammability limits</u>
 <u>Burning velocity</u>
- 3. MIE and quenching distance
- 4. Flame extinction diameter
- 5. Summary

Flammability limits measurement ASHRAE method* (1)

Test apparatus

Results of R290/Nitrogen/Air

Flame propagation is determined by 90 degree criterion measured from the point of ignition to the walls of the flask

*ANSI/ASHRAE Standard 34, Designation and safety classification of re

DAIST

Flammability limits measurement ASHRAE method (2)

Results for R1234yf (CH₂=CFCF₃) At 35 °C and 0% RH

DAIST

Burning velocity measurement in microgravity fuc

By removing gravity, we obtain "ideal" spherically-propagating flame

Apparatus in the inner capsule in the outer capsule

>Flame propagation can be expressed by established spherical flame models

Flame propagation in μ g R1234yf (CH₂=CFCF₃), S_{u,max} = 1.5 cm s⁻¹

By using μ g environment, we obtain

> spherically-propagating flame without affecting buoyancy nor wall quenching > S_u from highly to only mildly flammable compounds by a single test method

ZΔIST

Humidity effects on flammability

- Humidity level in the current standard is not high enough for high humidity areas of the world
- We are studying comprehensively on humidity effects on flammability

R1234yf flame with and without moisture

DAIST

Summary of Part 2

R290 flame in 1G

> By using μ g environment, we evaluate S_u from highly to only mildly flammable compounds

DAIST

1. Background

2. Fundamental flammability properties

- 3. MIE and quenching distance*
- Potential ignition sources
- Difficulty in MIE measurement
- Ignition and quenching of minimum flame
- Quenching distance measurement
- Estimation of MIE

QD measurement of R1234yf in μg

- 4. Flame extinction diameter
- 5. Summary

*See also, K. Takizawa et al., Quenching distance measurement of highly to mildly flammable compounds, Fire Safety J., 71, 58 (2015).

Background: potential ignition sources of refrigerants Indoor unit

≻2L refrigerants were not ignited by spark of hairdryer (1200W, ca. 0.2-0.4J)

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Potential ignition sources of refrigerants

Ignition test using MC

Example of AC outdoor unit

Electromagnetic contactor (MC) is an important potential ignition source that may exist in high concentration refrigerant

> R32 and R1234yf were not ignited by spark of AC220V and 60A load (ca. $4J > E_{min}$)

To understand these results, ignition and quenching characteristics for 2L should be accumulated

- Variation of reported MIE values is very wide, which makes it difficult to use MIE as a flammability index
- To obtain reliable MIE is important to improve the current situation

*B. Lewis, G. von Elbe, "Combustion, Flames and Explosions of Gases", third ed. (1987).

Ignition and quenching of minimum flame

Terms	Definition	Equation
Ignition	To supply to the combustible mixture sufficient energy to create a kernel of hot gas that satisfies the necessary condition for self-propagation	
Quenching distance (<i>d</i> _q)	Critical size that the inflamed volume must just exceed in order to propagate unaided	$d_{\rm q} = a \left(\lambda / C_{\rm P} \rho_0 S_{\rm u} \right)$
Minimum ignition energy (<i>E</i> _{min})	The amount of energy that the spark must supply for the hot kernel to attain this critical size (d_q)	$E_{\rm min} = (1/6) \pi d_{\rm q}^3 \rho_0 C_{\rm P} \Delta T$

> We estimate MIE by obtaining QD and employing heat loss theory

Quenching distance measurement

>Considering wide use of the test method and values, we tested various conditions:

TAIST

QD measurement in µg

-R1234yf, 10 vol%-

d = 24.7mm

d = 24.9mm

Ignited

Results of QD

-Relationship between QD and BV-

➢Obtained a single continuous function between d_q and S_u from highly to only mildly flammable compounds
 ➢ <u>S_u <10 cm s⁻¹ ⇐⇒ d_q ≥5 mm</u>

DΔIST

AIST

Estimation of MIE

- > Reported E_{min} are at most 3 orders of magnitude different
- Our estimation agreed with lower value of reported E_{min} for all the compounds without adding any modifications
- \succ E_{min} was essentially proportional to the cube of d_q

- 1. Background
- Importance of evaluating low flammability
- 2. Fundamental flammability properties
- 3. MIE and quenching distance
- <u>4. Flame extinction diameter</u> <u>-Index of safe design of electric parts</u>

5. Summary

R152a flame goes out through opening of MC

Measurement of flame extinction diameter

R290 (4.5%, *d* = 1.25mm)

R1234yf, μg (9.4%, *d* = 10mm)

Results of flame extinction diameter

Comparison of d^* (@*h* = 9mm)

R32 flame cannot pass the opening of MC

> d^* was positively related to d_q , negatively related to S_u > With increasing *h* (growing flame sphere), d^* decreased and converged

ZΔIST

Summary of part 4

Based on our experiment and theory, we can identify potential ignition sources of flammable refrigerants

-R290 flame having a high BV can pass the opening of socket

-2L flame having a low BV cannot pass the opening of MC

DΔIST

Summary

- AIST
- Evaluation of low flammability becomes practically important because the less flammable a material is, the more widely it will be accepted We are trying to develop evaluation methods and give the values to help development of good materials

2) DR-55: R32/125/1234yf (67/7/26)

2. In the NEDO project, we studied ignition and extinction of refrigerants

- We measured QD for various compounds by various conditions and obtained a single correlation between S_u and d_q
- Based on this correlation, we estimated E_{min} as a starting point
- We will further study ignition and extinction characteristics applicable to practical risk assessment of 2L refrigerants

